是区域,检测任务说白了,就是指出物体在图片中的位置/区域。
而即便在14-15年,R-系列作为领先的高性能算法,他的推理时间也是奇慢无比的。
采用14年牛津大学的VGG网络作为结构的骨干,需要整整几十秒才能处理一张图像。也就没有了任何实时的可能,只做学术研究之用,难以投入业界。
即便是一两年后,屡次更新,升级迭代的快速版本Fast R-系列,也只有0.5和个位数的FPS。
而孟繁岐给出的算法:YOLO。即便在448 x 448大小的图像上,速度也超过了80FPS。
如果采用最小的模型版本进行推理,速度甚至可以达到惊人的200帧。
多少人直到十年后,玩游戏的时候显示器都显示不了100帧?
原本的初版YOLO技术其实在精确程度上还有所不足,毕竟,作为专注于速度的检测技术,在性能上有所牺牲也是在所难免。
但孟繁岐开始接触YOLO技术的时候,都已经出到V4了,等到2023年的时候,甚至都已经到了V7,V8。
很多细节上的问题,孟繁岐就是想犯错都不知道该怎么犯。
最开始记得的就